Covering Problems in Edge- and Node-Weighted Graphs
نویسنده
چکیده
This paper discusses the graph covering problem in which a set of edges in an edgeand nodeweighted graph is chosen to satisfy some covering constraints while minimizing the sum of the weights. In this problem, because of the large integrality gap of a natural linear programming (LP) relaxation, LP rounding algorithms based on the relaxation yield poor performance. Here we propose a stronger LP relaxation for the graph covering problem. The proposed relaxation is applied to designing primal-dual algorithms for two fundamental graph covering problems: the prize-collecting edge dominating set problem and the multicut problem in trees. Our algorithms are an exact polynomial-time algorithm for the former problem, and a 2-approximation algorithm for the latter problem, respectively. These results match the currently known best results for purely edge-weighted graphs.
منابع مشابه
Node-Weighted Network Design in Planar and Minor-Closed Families of Graphs
We consider node-weighted network design in planar and minor-closed families of graphs. In particular we focus on the edge-connectivity survivable network design problem (EC-SNDP). The input consists of a node-weighted undirected graph G = (V,E) and integral connectivity requirements r(uv) for each pair of nodes uv. The goal is to find a minimum node-weighted subgraph H of G such that, for each...
متن کاملON THE EDGE COVER POLYNOMIAL OF CERTAIN GRAPHS
Let $G$ be a simple graph of order $n$ and size $m$.The edge covering of $G$ is a set of edges such that every vertex of $G$ is incident to at least one edge of the set. The edge cover polynomial of $G$ is the polynomial$E(G,x)=sum_{i=rho(G)}^{m} e(G,i) x^{i}$,where $e(G,i)$ is the number of edge coverings of $G$ of size $i$, and$rho(G)$ is the edge covering number of $G$. In this paper we stud...
متن کاملOn Bipartite and Multipartite Clique Problems
In this paper, we introduce the maximum edge biclique problem in bipartite graphs and the edge/node weighted multipartite clique problem in multipartite graphs. Our motivation for studying these problems came from abstractions of real manufacturing problems in the computer industry and from formal concept analysis. We show that the weighted version and four variants of the unweighted version of...
متن کاملDetour Monophonic Graphoidal Covering Number of Corona Product Graph of Some Standard Graphs with the Wheel
A chord of a path $P$ is an edge joining two non-adjacent vertices of $P$. A path $P$ is called a monophonic path if it is a chordless path. A longest $x-y$ monophonic path is called an $x-y$ detour monophonic path. A detour monophonic graphoidal cover of a graph $G$ is a collection $psi_{dm}$ of detour monophonic paths in $G$ such that every vertex of $G$ is an internal vertex of at most on...
متن کاملWatersheds on edge or node weighted graphs "par l'exemple"
Watersheds have been defined both for node and edge weighted graphs. We show that they are identical: for each edge (resp. node) weighted graph exists a node (resp. edge) weighted graph with the same minima and catchment basin.
متن کامل